Mobile, Cross Browser Testing, DevOps and Continuous Testing Trends and Projections for 2018

As we about to wrap out 2017, It’s the right time to get ready to what’s expected next year in the mobile, cross-browser testing and DevOps landscape.

To categorize this post, I will divide the trends into the following buckets (there may be few more points, but I believe the below are the most significant ones)

  • DevOps and Test Automation on Steroids Will Become Key for Digital Winners
  • Artificial Intelligence (AI) and Machine Learning (ML)/ Tools alignment as part of Smarter Testing throughout the pipeline
  • IOT and Digital Transformation Moving to Prime Time

 

DevOps and Automation on Steroids

If in 2017, we’ve seen the tremendous adoption of more agile methods, ATDD, BDD and organizations leaving legacy tools behind in favor of faster and more reliable and agile-ready testing tools, such that can fit the entire continuous testing efforts whether they’re done by Dev, BA, Test or Ops.

In 2018, we will see the above growing to a higher scale, where more manual and legacy tools skills are transforming into more modern ones. The growth in continuous testing (CT), Continuous Integration (CI) and DevOps will also translate into much shorter release cadence as a bridge towards real Continuous Delivery (CD)

 

Related to the above, to be ready for the DevOps and CT trend, engineers need to become more deeply familiar with tools like Espresso, XCUITest, Earl Grey and Appium on the mobile front, and with the open-source web-based framework like the headless google project called Puppeteer, Protractor, and other web driver based framework.

In addition, optimizing the test automation suite to include more API and Non-Functional testing as the UX aspect becomes more and more important.

Shifting as many tests left and right is not a new trend, requirement or buzz – nothing change in my mind around the importance of this practice – the more you can automate and cover earlier, the easier it will be for the entire team to overcome issues, regressions and unexpected events that occur in the project life cycle.

AI, ML, and Smarter Test Automation

While many vendors are seeking for tools that can optimize their test automation suite, and shorten their overall execution time on the “right” platforms, the 2 terms of AI and ML (or Deep learning) are still unclear to many tool vendors, and are being used in varying perspectives that not always mean AI or ML 🙂

The end goal of such solutions is very clear, and the problem it aims to solve is real –> long testing cycles on plenty of mobile devices, desktop browsers, IOT devices and more, generates a lot of data to analyze and as a result, it slows down the DevOps engine. Efficient mechanism and tools that can crawl through the entire test code, understand which tests are the most valuable ones, and which platforms are the most critical to test on due to either customer usage or history of issues etc. can clearly address such pain.

Another angle or goal of such tools is to continuously provide a more reliable and faster test code generation. Coding takes time, requires skills, and varies across platforms. Having a “working” ML/AI tool that can scan through the app under test and generate robust page object model, and functional test code that runs on all platforms, as well as “responds” to changes in the UI, can really speed up TTM for many organization and focus the teams on the important SDLC activities in opposed to forcing Dev and Test to spend precious time on test code maintenance.

IOT and The Digital Transformation

In 2017, Google, Apple, Amazon and other technology giants announced few innovations around digital engagements. To name a few, better digital payments, better digital TV, AR and VR development API and new secure authentication through Face ID. IOT this year, hasn’t shown a huge leap forward, however, what I did notice, was that for specific verticals like Healthcare, and Retail, IOT started serving a key role in their digital user engagements and digital strategy.

In 2018, I believe that the market will see an even more advanced wave in the overall digital landscape where Android and Apple TV, IOT devices, Smart Watches and other digital interfaces becoming more standard in the industry, requiring enterprises to re-think and re-build their entire test lab to fit these new devices.

Such trend will also force the test engineers to adapt to the new platforms and re-architect their test frameworks to support more of these screens either in 1 script of several.

Some insights on testing IOT specifically in the healthcare vertical were recently presented by my colleague Amir Rozenberg – recommend to review the slides below

https://www.slideshare.net/AmirRozenberg/starwest-2017-iot-testing/ 

 

Bottom Line

Do not immediately change whatever you do today, but validate whether what you have right now is future ready and can sustain what’s coming in the near future as mentioned above.

If DevOps is already in practice in your organization, fine – make sure you can scale DevOps, shorten release time, increase test and platform automation coverage, and optimize through smarter techniques your overall pipeline.

AI and ML buzz are really happening, however, the market needs to properly define what it means to introduce these into the SDLC, and what would success look like if they do consider leveraging such. From a landscape perspective, these tools are not yet mature and ready for prime time, so that leaves more time to properly get ready for them.

Happy New 2018 to My Followers.

Advertisements

Criteria’s for Choosing The Right Open-Source Test Automation Tools

I presented last night at a local Boston meetup hosted by BlazeMeter a session together with my colleague Amir Rozenberg.

The subject was the shift from legacy to open-source frameworks, the motivations behind and also the challenges of adopting open-source without a clear strategy especially in the digital space that includes 3 layers:

  1. Open source connectivity to a Lab
  2. Open-source and its test coverage capabilities (e.g. Can open-source framework support system level, visual analysis, real environment settings and more)
  3. open-source reporting and analysis capabilities.

During the session, Amir also presented an open-source BDD/Cucumber based test framework called Quantum (http://projectquantom.io)

Full presentation slides can be found here:

Happy Reading

Eran & Amir

Model-Based Testing and Test Impact Analysis

In my previous blogs and over the years, I already stated how complicated, demanding and challenging is the mobile space, therefore it seems obvious that there needs to be a structured method of building test automation and meeting test coverage goals for mobile apps.

While there are various tools and techniques, in this blog I would like to focus on a methodology that has been around for a while but was never adopted in a serious and scalable way by organizations due to the fact that it is extremely hard to accomplish, there are no sufficient tools out there that support it when it comes to non-proprietary open-source tools and more.

First things first, let’s define what is a Model-Based testing

Model-based testing (MBT) is an application for designing and optionally executing artifacts to perform software testing or system testing. Models can be used to represent the desired behavior of a System Under Test (SUT), or to represent testing strategies and a test environment.

mbt

Fig 1: MBT workflow example. Source: Wikipedia

In the context of mobile, if we think about an end-user workflow with an application it will usually start with a Login to the app, performing an action, going back, performing a secondary action and often even a 3rd action based on the previous output of the 2nd. Complex Ha

The importance of modeling a mobile application serves few business goals:

  1. App release velocity
  2. App testing coverage (use cases)
  3. App test automation coverage (%)
  4. Overall app quality
  5. Cross-team synchronization (Dev, Test, Business)

 

As already covered in an old blog  I wrote, mobile apps would behave differently, and support different functionality based on the platform they are running (E.g., not every iOS device support both Touch ID and/or 3D Touch gesture). Therefore, being able to not only model the app and generate the right test cases but also to match these tests across the different platforms can be a key to achieving many of the 1-5 goals above.

In the market, today there are various commercial tools that can assist in MBT like CA Agile Requirement Designer, Tricentis Tosca, and others.

Looking at an example provided by one of the commercial vendors in the market (Tricentis), it can show a common workflow around MBT. A team aims to test an application; therefore, they would scan it using the MBT tool to “learn” its use cases, capabilities, and other artifacts so they can stack these into a common repository that can serve the team to build test automation.

tosca

Fig 2: Tricentis Tosca MBTA tool

In Fig 2., Tricentis examines a web page to learn its entire options, objects, and other data related items. Once the app is scanned, it can be easily converted into a flow diagram that can serve as the basis for test automation scenarios.

With the above goals in mind, it is important to understand that having an MBT tool that serves the automation team is a good thing, but only if it increases the team efficiency, its release velocity, and the overall test automation coverage. If the output of such tool would be a long list of test cases that either does not cover the most important user flows, or it includes many duplicates than this wouldn’t serve the purpose of MBT but rather will delay existing processes, and add unnecessary work to teams that are already under pressure.

In addition to the above commercial tools, there is an older but free tool that allows Android MBT with robotium called MobiGuitar. This tool not just offers MBT capabilities but also code coverage driven by the generated test scripts.

A best practice in that regards would be to probably use an MBT tool that can generate all the application related artifacts that include the app object repository, the full set of use cases, and allow all of that to be exported to leading open-source test automation frameworks like Selenium, Appium, and others.

Mobile Specific MBT – Best Practices and Examples

Drilling down into a workflow that CA would recommend around MBT would look as follows – In reality, the below is easier said than done for a Mobile App compared to Web and Desktop:

  1. The business analysts will create the story using tools like CA Agile Requirement Designer or such (see below more examples)
  2. The story is then passed to an ALM tool (e.g.: CA Agile Central [formerly Rally], Jira, etc.) for project tracking
  3. Teams use the MBT tools to collaborate
    1. The automation engineer adds the automation code snippets to the nodes where needed or adds additional nodes for automation.
    2. The programmer updates the model for technical specs or more technical details.
    3. The Test Data engineer assigns test data to the model
  4. Changes to the story are synchronized with the ALM Tool
  5. Test cases are synchronized with the ALM Tool
  6. The programmer completes coding
  7. The code is promoted from Dev to QA
  8. Testing begins
    1. The tester uses the test cases with test data from MBT tools for manual test case execution
    2. The automation scripts with test data are executed for functional and regression testing

To learn more about efficient MBT solutions, practices please refer to these sources: